Extracellular acidification activates cAMP responsive element binding protein via Na+/H+ exchanger isoform 1-mediated Ca²⁺ oscillation in central nervous system pericytes.

نویسندگان

  • Kuniyuki Nakamura
  • Masahiro Kamouchi
  • Koichi Arimura
  • Ataru Nishimura
  • Junya Kuroda
  • Koji Ishitsuka
  • Himiko Tokami
  • Hiroshi Sugimori
  • Tetsuro Ago
  • Takanari Kitazono
چکیده

OBJECTIVE We have previously shown that Na(+)/H(+) exchanger isoform 1 (NHE1) plays an important role in Ca(2+) signaling and cell proliferation in human central nervous system (CNS) pericytes. The aims of the present study were to elucidate how NHE1-induced Ca(2+) signaling during acidosis is transformed into cellular responses in CNS pericytes. METHODS AND RESULTS Human CNS pericytes were cultured, and the activation of cAMP responsive element-binding protein (CREB) was evaluated by Western blotting analysis, immunofluorescence, and luciferase assays. In human CNS pericytes, low extracellular Na(+) or low pH generated Ca(2+) oscillation and subsequently phosphorylated Ca(2+)/calmodulin-dependent kinase II (CaMKII) and CREB in a time-dependent manner. Focal cerebral ischemia was applied using photothrombotic distal middle cerebral artery occlusion in mice, and the phosphorylation of CREB and the production of interleukin-6 were observed in pericytes migrating into the peri-infarct penumbra during the early phase after ischemic insult. CONCLUSIONS Our results indicate that extracellular acidosis induces Ca(2+) oscillation via NHE1, leading to Ca(2+)/CaMKII-dependent CREB activation in human CNS pericytes. Acidosis may upregulate a variety of proteins, such as interleukin-6, through the NHE1-Ca2+/CaMKII-CREB pathway in brain pericytes and may thus modulate brain ischemic insult.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of NHE1 in calcium signaling and cell proliferation in human CNS pericytes.

The central nervous system (CNS) pericytes play an important role in brain microcirculation. Na(+)/H(+) exchanger isoform 1 (NHE1) has been suggested to regulate the proliferation of nonvascular cells through the regulation of intracellular pH, Na(+), and cell volume; however, the relationship between NHE1 and intracellular Ca(2+), an essential signal of cell growth, is still not known. The aim...

متن کامل

Calcium and cAMP signals differentially regulate cAMP-responsive element-binding protein function via a Rap1-extracellular signal-regulated kinase pathway.

Two major intracellular signals that regulate neuronal function are calcium and cAMP. In many cases, the actions of these two second messengers involve long term changes in gene expression. One well studied target of both calcium and cAMP signaling is the transcription factor cAMP-responsive element-binding protein (CREB). Multiple signaling pathways have been shown to contribute to the regulat...

متن کامل

O-13: Na+/K+-ATPase Alpha1 Isoform Mediates Ouabain-Induced Expression of Cyclin D1 and Proliferation of Rat Sertoli Cells

Background: Novel roles for the interaction of cardiotonic steroids to Na+/K+-ATPase have been established in recent years. The aim of the present study was to investigate the intracellular signaling events downstream the action of ouabain on Na+/K+-ATPase in Sertoli cell obtained from immature rats. Treatment of Sertoli cells with ouabain (1 μM) induced a rapid and transient increase in the ex...

متن کامل

A Novel Human Mutation in the SLC9A1 Gene Results in Abolition of Na+/H+ Exchanger Activity

The SLC9A1 gene, the Na+/H+ exchanger isoform 1 is the principal plasma membrane Na+/H+ exchanger of mammalian cells and functions by exchanging one intracellular proton for one extracellular sodium. The human protein is 815 amino acids in length. Five hundred N-terminal amino acids make up the transport domain of the protein and are believed to form 12 transmembrane segments. Recently, a genet...

متن کامل

Stimulation of Na+/H+ Exchanger Isoform 1 Promotes Microglial Migration

Regulation of microglial migration is not well understood. In this study, we proposed that Na(+)/H(+) exchanger isoform 1 (NHE-1) is important in microglial migration. NHE-1 protein was co-localized with cytoskeletal protein ezrin in lamellipodia of microglia and maintained its more alkaline intracellular pH (pHi). Chemoattractant bradykinin (BK) stimulated microglial migration by increasing la...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Arteriosclerosis, thrombosis, and vascular biology

دوره 32 11  شماره 

صفحات  -

تاریخ انتشار 2012